Pressure Relief Valve KITO® DS/KS-IIA-...-A KITO® DS/KS-IIA-...-K

Type examination certificate to DIN EN ISO 16852

C ← -designation in accordance to ATEX-Guideline 94/9/EC

Example to order:

KITO® DS/KS-IIA-25-A

(design with weather hood from PMMA and flange connection DN 25 PN 40)

DN	ANSI	~D	~H		~ kg*	setting (mbar)	
			DIN	ANSI	~ kg	min.	max.
25 PN 40	1"	220	305	320	10	2.5	300
50 PN 16	2"		315	335	14	1.6	123
80 PN 16	3"	245	370	375	19	1.9	135
100 PN 16	4"				20	1.9	85

Dimensions in mm

* Indicated weights are understood without weight load and refer to the standard design

Attention !!! Dimension H for design with a weather hood from stainless steel 1.4571 ca. 10-15 mm lower.

Standard valve setting 7-30 mbar -different settings against additional price-

Design subject to change

performance curves: C 0.7 N

Standard design

housing : steel, stainless steel mat. no. 1.4571

valve seat / spindle valve sealing

KITO® casing / grid

: stainless steel mat. no. 1.4571

: NBR, Viton, PTFE

KITO® flame arrester element

: completely interchangeable : stainless steel mat. no.

<u>1.4308 / 1.4310</u>, 1.4408 / 1.4571

weather hood :

KITO® DS/KS-IIA-...-K: stainless steel mat. no. 1.4571, hood

can fold automatically as a result of folding mechanism and fusing element

KITO® DS/KS-IIA-...-A: PMMĂ

protective screen : F

flange connection : <u>DIN EN 1092-1 form B1</u>,

ANSI 150 lbs. RF

Application

As venting device for installation on storage tanks incorporating an explosion and endurance burning flame arrester element and a PRV to allow for the passage of excess pressure but prevent or minimize the loss of gas/vapours depending on valve adjustment. Usually mounted on top of the tank in conjunction with a vacuum relief valve.

Approved for all materials of the explosion group IIA with a maximum experimental safe gap (MESG) > 0.9.

An explosion proof condensate drain is also available for this model at extra cost.

Pressure Relief Valve KITO® DS/KS-IIA-...-A KITO® DS/KS-IIA-...-K C 7 N

The flow capacity V refers to a density of air with ρ = 1.29 kg/m³ at a temperature of 273 K and a pressure of 1.013 mbar. The indicated flow rates will be reached by an accumulation of 40% above valve's setting.

The flow capacity for gases with different densities can be calculated sufficiently accurate by the following approximation equation:

$$\dot{V}_{40\%} = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1.29}}$$
 or $\dot{V}_b = \dot{V}_{40\%} \cdot \sqrt{\frac{1.29}{\rho_b}}$

Indicated flow rates will be reached by an accumulation of 40% above valve's setting.

Design subject to change