
Tank Venting Valve KITO® VD/TL

Without EC certificate and C € -designation

	ANSI	С	н	H1	kg*	setting (mbar)			
DN						pe1		pe2	
						min.	max.	min.	max.
25 PN 40	1"	240	210	90	13	2.5	72	2.9	93
32 PN 40	1 ¼"	240	220	90	16	2.5	70	2.9	91
40 PN 40	1 1/2"	350	308	120	29	1.8	210	2.1	158
50 PN 16	2"	350	308	120	31	1.8	205	2.1	154
65 PN 16	2 1/2"	350	316	120	33	1.5	141	1.7	105
80 PN 16	3"	350	364	130	40	1.7	155	1.7	120
100 PN 16	4"	450	415	150		1.6	240	1.4	140
125 PN 16	5"	500	400	160		1.4	215	1.7	140
150 PN 16	6"	550	441	180		1.7	235	1.9	155

Dimensions in mm

Standard valve setting 7-30 mbar -different settings against additional price-

Construction length C can be adapted to customers wish to local situation.

Standard design

Design subject to change

housing : steel, stainless steel mat. no. 1.4571 valve seat and spindle : stainless steel mat. no. 1.4571

valve sealing : NBR, Viton, PTFE gasket flange connection

: <u>HD 3822</u>, PTFE : <u>DIN EN 1092-1 form A</u>, ANSI 150 lbs. RF

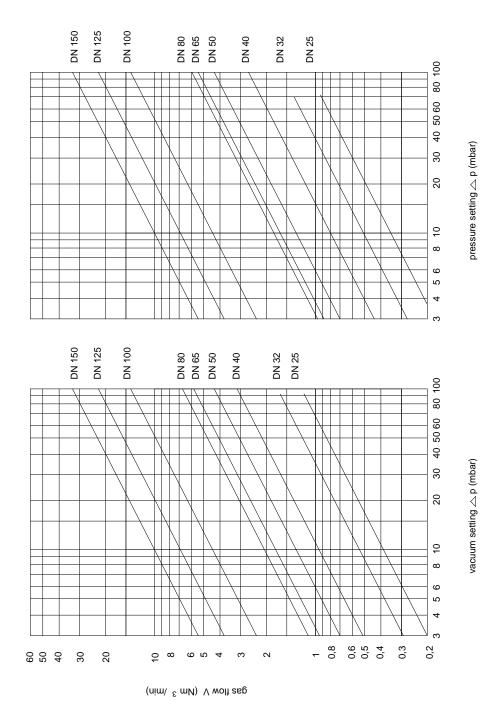
Application

as inline armature, with venting and breather valve function for vessels, used preferably for installations in pipes. The exhaust air is carried away via a pipe. The ventilation is also effected via a pipe, which is preferably used to carry inert gas.

Functions the same as KITO VD/o3 see F 18 N.

performance curves: F 0.32 N

^{*} Indicated weights are understood without weight load and refer to the standard design.



Flow capacity V based on air of a density ρ = 1.29 kg/m³ at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\overset{\cdot}{\mathbf{V}} = \overset{\cdot}{\mathbf{V}}_{b} \cdot \sqrt{\frac{\rho_{b}}{1.29}} \ or \qquad \overset{\cdot}{\mathbf{V}}_{b} = \overset{\cdot}{\mathbf{V}} \cdot \sqrt{\frac{1.29}{\rho_{b}}}$$

Air flow capacity at 40% above valve setting (see DIN 4119). If different accumulations are required see page A 32 for correcting factor.

Curves indicated by — require special weight loads.

Design subject to change