
Liquid Product Seal KITO® FL/EO-...-IIB3

DN	ANSI	D	С	Н	H1	kg*
25 PN 40	1"	140	125	445	325	13
32 PN 40	1 1/4"	140	137.5	480	360	15
40 PN 40	1 1/2"	195	175	565	420	28
50 PN 16	2"	195	175	570	415	31
65 PN 16	2 1/2"	275	225	720	540	62
80 PN 16	3"	275	225	720	540	64
100 PN 16	4"	325	250	800	595	90
125 PN 16	5"	460	300	1265	915	260
150 PN 16	6"	460	300	1265	915	262
200 PN 10	8"	510	350	1520	1100	368

Dimensions in mm

* weight refers to the standard design

performance curves: G 0.13.1N

Example to order:

KITO® FL/EO-100-IIB3

(flange connections DN 100 PN 16)

Design subject to change

Standard design

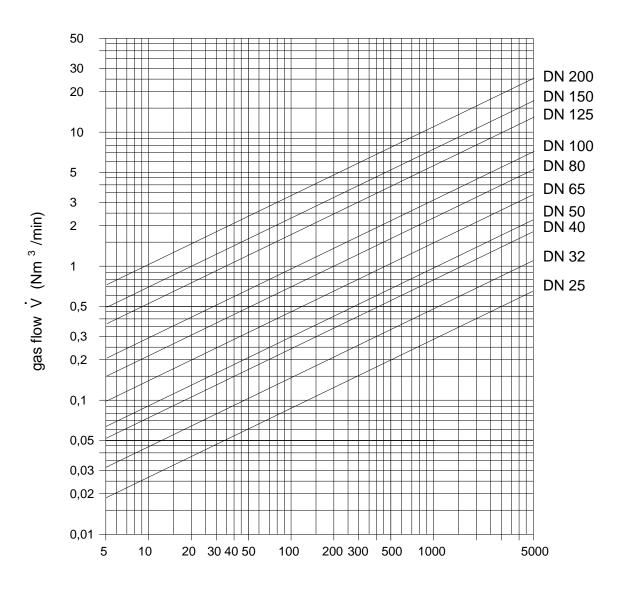
housing : steel, stainless steel mat. no. 1.4571,

flange connections : DIN EN 1092-1 form A,

ANSI 150 lbs. RF

Application

as inline armature, detonation-proof and flameproof, used for installation in filling pipes outside from tanks in which inflammable liquids are stored.


Tested and approved as detonation flame arrester type 4. Approved for all materials of the explosion group IIB3 with MESG ≥ 0.65 mm.

It is only allowed to install pipes of nominal widths \leq than the nominal widths of the flange. Mounting position is perpendicular. The body of the housing has to be permanently filled with the storage liquid up to the height of the connecting flanges. Equipped with a hexagon head pipe plug for emptying the liquid.

The volume flow V in Nm³/min was determined with water according to DIN EN 60534 at a temperature T_n = 15°C and an atmospheric pressure ρ_n = 1013 mbar.

For media of different density the flow rate may be calculated with an appropriate accuracy with this formula:

$$\stackrel{\cdot}{\mathbf{V}}_{
m liquid} \cong \stackrel{\cdot}{\mathbf{V}}_{
m water} \stackrel{\cdot}{} \sqrt{rac{
ho_{
m water}}{
ho_{
m liquid}}}$$

pressure drop $\triangle p$ (mbar)

Design subject to change